
 
 

A Brief Introduction to Factor Analysis 
 
1.  Introduction 
 
Factor analysis attempts to represent a set of observed variables X1, X2 …. Xn  in terms of a 
number of 'common' factors plus a factor which is unique to each variable.  The common 
factors (sometimes called latent variables)  are hypothetical variables which explain why a 
number of variables are correlated with each other -- it is because they have one or more 
factors in common.   
 
A concrete physical example may help.  Say we measured the size of various parts of the 
body of a random sample of humans:  for example, such things as height, leg, arm, finger, 
foot and toe lengths and head, chest, waist, arm and leg circumferences, the distance between 
eyes, etc.  We'd expect that many of the measurements would be correlated, and we'd say that 
the explanation for these correlations is that there is a common underlying factor of body 
size.  It is this kind of common factor that we are looking for with factor analysis, although in 
psychology the factors may be less tangible than body size. 
 
To carry the body measurement example further, we probably wouldn't expect body size to 
explain all of the variability of the measurements:  for example, there might be a lankiness 
factor, which would explain some of the variability of the circumference measures and limb 
lengths, and perhaps another factor for head size which would have some independence from 
body size (what factors emerge is very dependent on what variables are measured).  Even 
with a number of common factors such as body size, lankiness and head size, we still 
wouldn't expect to account for all of the variability in the measures (or explain all of the 
correlations), so the factor analysis model includes a unique factor for each variable which 
accounts for the variability of that variable which is not due to any of the common factors. 
 
Why carry out factor analyses?   If we can summarise a multitude of measurements with a 
smaller number of factors without losing too much information, we have achieved some 
economy of description, which is one of the goals of scientific investigation.  It is also 
possible that factor analysis will allow us to test theories involving variables which are hard 
to measure directly.  Finally, at a more prosaic level, factor analysis can help us establish that 
sets of questionnaire items (observed variables) are in fact all measuring the same underlying 
factor (perhaps with varying reliability) and so can be combined to form a more reliable 
measure of that factor. 
 
There are a number of different varieties of factor analysis:  the discussion here is limited to 
principal axis factor analysis and factor solutions in which the common factors are 
uncorrelated with each other.  It is also assumed that the observed variables are standardised 
(mean zero, standard deviation of one) and that the factor analysis is based on the correlation 
matrix of the observed variables. 
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2.  The Factor Analysis Model 
 
If the observed variables are X1, X2 …. Xn, the common factors are F1, F2 … Fm and the 
unique factors are U1, U2 …Un , the variables may be expressed as linear functions of the 
factors: 
 
X1 = a11F1 + a12F2 + a13F3 + … + a1mFm +   a1U1 

X2 = a21F1 + a22F2 + a23F3 + … + a2mFm +   a2U2                           
…. 

 

Xn = an1F1 + an2F2 + an3F3 + … + anmFm +  anUn   (1) 
 
Each of these equations is a regression equation; factor analysis seeks to find the coefficients 
a11, a12 … anm which best reproduce the observed variables from the factors.  The coefficients 
a11, a12 … anm are weights in the same way as regression coefficients (because the variables 
are standardised, the constant is zero, and so is not shown).  For example, the coefficient a11 
shows the effect on variable X1 of a one-unit increase in F1.   In factor analysis, the 
coefficients are called loadings (a variable is said to 'load' on a factor) and, when the factors 
are uncorrelated, they also show the correlation between each variable and a given factor.  In 
the model above, a11 is the loading for variable X1 on F1, a23 is the loading for variable X2 on 
F3, etc.   
 
When the coefficients are correlations, i.e., when the factors are uncorrelated, the sum of the 
squares of the loadings for variable X1, namely a11

2 + a12
2 +  …  + a13

2, shows the proportion 
of the variance of variable X1 which is accounted for by the common factors.  This is called 
the communality.  The larger the communality for each variable, the more successful a factor 
analysis solution is.   
 
By the same token, the sum of the squares of the coefficients for a factor -- for F1 it would 
be [a11

2 + a21
2 +  … + an1

2] -- shows the proportion of the variance of  all the variables which 
is accounted for by that factor.  
 
3.  The Model for Individual Subjects 
 
Equation (1) above, for variable 2, say, may be written explicitly for one subject i as  
 
X2i = a21F1i + a22F2i + a23F3i + … + a2mFmi + a2U2i                        (2) 
 
This form of the equation makes it clear that there is a value of each factor for each of the 
subjects in the sample; for example, F2i represents subject i's score on Factor 2.  Factor scores 
are often used in analyses in order to reduce the number of variables which must be dealt 
with.  However, the coefficients a11, a21, …. anm are the same for all subjects, and it is these 
coefficients which are estimated in the factor analysis. 
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4.  Extracting Factors and the Rotation of Factors 
 
The mathematical process used to obtain a factor solution from a correlation matrix is such 
that each successive factor, each of which is uncorrelated with the other factors, accounts for 
as much of the variance of the observed variables as possible.  (The amount of variance 
accounted for by each factor is shown by a quantity called the eigenvalue, which is equal to 
the sum of the squared loadings for a given factor, as will be discussed below).  This often 
means that all the variables have substantial loadings on the first factor; i.e., that coefficients 
a11, a21, …. anm are all greater than some arbitrary value such as .3 or .4.  While this initial 
solution is consistent with the aim of accounting for as much as possible of the total variance 
of the observed variables with as few factors as possible, the initial pattern is often adjusted 
so that each individual variable has substantial loadings on as few factors  as possible 
(preferably only one).  This adjustment is called rotation to simple structure, and seeks to 
provide a more interpretable outcome.  As will be seen in the example which we'll work 
through later, rotation to simple structure can be seen graphically as the moving or rotation of 
the axes (using the term 'axis' in the same way as it is used in 'x-axis' and 'y-axis') which 
represent the factors. 
 
5.  Estimating Factor Scores 
 
Given the equations (1) above, which show the variables X1 … Xn in terms of the factors F1 
…Fm , it should be possible to solve the equations for the factor scores, so as to obtain a score 
on each factor for each subject.  In other words, equations of the form  
 
F1 = b11X1 + b12X2 … b1nXn   
F2 = b21X1 + b22X2 … b2nXn   
 
…. 
 
Fm = bm1X1 + bm2X2 … bmnXn      (3) 
 
should be available;  however, problems are caused by the unique factors, because when they 
are included with the common factors, there are more factors than variables, and no exact 
solution for the factors is available.  [An aside:  The indeterminacy of the factor scores is one 
of the reasons why some researchers prefer a variety of factor analysis called principal 
component analysis (PCA).  The PCA model doesn't contain unique factors:  all the variance 
of the observed variables is assumed to be attributable to the common factors, so that the 
communality for each variable is one.  As a consequence, an exact solution for the factors is 
available in PCA, as in equations (3) above.  The drawback of PCA is that its model is 
unrealistic; also, some studies have suggested that factor analysis is better than PCA at 
recovering known underlying factor structures from observed (Snook & Gorsuch, 1989; 
Widaman, 1993)]. 
 
Because of the lack of an exact solution for factor scores, various approximations have been 
offered, and three of these are available in SPSS.  One of these approximations will be 
discussed in considering the example with real data.  It is worth noting, however, that many 
researchers take matters into their own hands and use the coefficients a11, a12 … anm from the 
factor solution as a basis for creating their own factor scores.  Grice (2001), who describes 
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and evaluates various methods of calculating factor scores, calls this method a 'coarse' one, 
and compares it unfavourably with some 'refined' methods and another 'coarse' one based on 
factor score coefficients. 
 
6.  Calculating Correlations from Factors 
 
It was mentioned above that an aim of factor analysis is to 'explain' correlations among 
observed variables in terms of a relatively small number of factors.  One way of gauging the 
success of a factor solution is to attempt to reproduce the original correlation matrix by using 
the loadings on the common factors and seeing how large a discrepancy there is between the 
original and reproduced correlations -- the greater the discrepancy, the less successful the 
factor solution has been in preserving the information in the original correlation matrix.  How 
are the correlations derived from the factor solution?  When the factors are uncorrelated, the 
process is simple.  The correlation between variables X1 and X2 is obtained by summing the 
products of the coefficients for the two variables across all common factors; for a three-factor 
solution, the quantity would be (a11 x a21) + (a12 x a22) + (a13 x a23).  This processs will 
become clearer in the description of the hypothetical two-factor solution based on five 
observed variables in the next section. 
  
7.  A Hypothetical Solution 
 
Variable Loadings/Correlations Communality Reproduced correlations 

 Factor 1 Factor 2   X1 X2 X3 X4 X5  
X1 .7 .2 .53 X1 .      
X2 .8 .3 .73 X2 .62 .     
X3 .9 .4 .97 X3 .71 .84 .    
X4 .2 .6 .40 X4 .26 .34 .42 .   
X5 .3 .7 .58 X5 .35 .45 .55 .48 .  

           
 x2 2.07 x2 1.14         
           

 
7.1  The Coefficients 
 
According to the above solution, 
 
X1 = .7F1 + .2F2 
X2 = .8F1 + .3F2 
….. 
X5 = .3F1 + .7F2 . 
 
As well as being weights, the coefficients above show that the correlation between X1 and F1 
is .70, that between X1 and F2 is .20, and so on. 
 
7.2  Variance Accounted For 
 
The quantities at the bottom of each factor column are the sums of the squared loadings for 
that factor, and show how much of the total variance of the observed variables is accounted 
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for by that factor.  For Factor 1, the quantity is .72 + .82 + .92 + .22 + .32 = 2.07.  Because in 
the factor analyses discussed here the total amount of variance is equal to the number of 
observed variables (the variables are standardised, so each has a variance of one), the total 
variation here is five, so that Factor 1 accounts for (2.07/5) x 100 = 41.4% of the variance. 
 
The quantities in the communality column show the proportion of the variance of each 
variable accounted for by the common factors.  For X1 this quantity is .72 + .22 = .53, for X2 it 
is .82 + .32 = .73, and so on. 
 
7.3  Reproducing the Correlations 
 
The correlation between variables X1 and X2 as derived from the factor solution is equal to (.7 
x .8) + (.2 x .3) = .62, while the correlation between variables X3 and X5 is equal to (.9 x .3) + 
(.4 x .7) = .55.  These values are shown in the right-hand side of the above table.     
 
8.  How Many Factors? 
 
A factor solution with as many factors as variables would score highly on the amount of 
variance accounted for and the accurate reproduction of correlations, but would fail on 
economy of description, parsimony and explanatory power.  The decision about the number 
of common factors to retain, or to use in rotation to simple structure, must steer between the 
extremes of losing too much information about the original variables on one hand, and being 
left with too many factors on the other.  Various criteria have been suggested.  The standard 
one (but not necessarily the best) is to keep all the factors which have eigenvalues greater 
than one in the original solution, and that is used in the example based on workmot.sav, 
which is referred to in Exercise 2 in An Introduction to SPSS for Windows.  This example is 
described in greater detail in the next section. 
 
9.  An Example with Real Data 
 
This example is based on variables d6a to d6h of workmot.sav.  The items corresponding to 
the variables are given in Appendix 1 of An Introduction to SPSS for Windows versions 9 and 
10.  The root question is "How important are the following factors to getting ahead in your 
organisation?"  Respondents rate the eight items, such as "Hard work and effort", "Good 
luck", "Natural ability" and "Who you know" on a six-point scale.  The scale ranges from 
"Not important at all" (coded 1) to "Extremely important" (coded 6). 
 
9.1  The correlation matrix 

Correlations

1.000 -.320 .658 -.452 .821 -.302 .604 .178
-.320 1.000 -.062 .426 -.316 .355 -.078 .114
.658 -.062 1.000 -.313 .709 -.220 .597 .314

-.452 .426 -.313 1.000 -.453 .597 -.243 .174
.821 -.316 .709 -.453 1.000 -.381 .679 .160

-.302 .355 -.220 .597 -.381 1.000 -.082 .200
.604 -.078 .597 -.243 .679 -.082 1.000 .267
.178 .114 .314 .174 .160 .200 .267 1.000

D6A  Hard work&effort
D6B  Good luck
D6C  Natural ability
D6D  Who you know
D6E  Good performance
D6F  Office politics
D6G  Adapatability
D6H  Years of service

D6A  Hard
work&effort

D6B 
Good luck

D6C  Natural
ability

D6D  Who
you know

D6E  Good
performance

D6F  Office
politics

D6G 
Adapatability

D6H  Years
of service
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Inspection of the correlation matrix suggests that certain kinds of items go together.  For 
example, responses to "Hard work and effort", "Natural ability", "Good performance" and 
"Adaptability" are moderately correlated with each other and less so with other items. 
 
9.2  Carrying out the Factor Analysis 
 
Instructions for carrying out the factor analysis are given on pages 22 to 26 of An 
Introduction to SPSS for Windows.  Additional commands are described in the following sub-
sections. 
 
9.3  The Initial Factor Analysis Solution 
 
The first table shows the initial and final communalities for each factor.  The final estimate of 

Communalities

.708 .740

.265 .262

.581 .638

.477 .649

.782 .872

.421 .524

.523 .577

.216 .275

D6A  Hard work&effort
D6B  Good luck
D6C  Natural ability
D6D  Who you know
D6E  Good performance
D6F  Office politics
D6G  Adapatability
D6H  Years of service

Initial Extraction

Extraction Method: Principal Axis Factoring.
 

the communality which is given in the second column of the table, is arrived at by an iterative 
process.  To start the ball rolling, an initial estimate is used.  By default, this is the squared 
multiple correlation obtained when each variable is regressed on all the other variables.  In 
other words, the amount of the variance of variable X1  explained by all the other variables is 
taken as a reasonable first estimate of the amount of X1's variance accounted for by the 
common factors. 

Total Variance Explained

3.634 45.427 45.427 3.317 41.457 41.457
1.748 21.847 67.275 1.220 15.253 56.710

.766 9.569 76.844

.615 7.687 84.530

.415 5.188 89.719

.364 4.553 94.271

.306 3.824 98.096

.152 1.904 100.000

Factor
1
2
3
4
5
6
7
8

Total
% of

Variance Cumulative % Total
% of

Variance Cumulative %

Initial Eigenvalues Extraction Sums of Squared Loadings

Extraction Method: Principal Axis Factoring.
 

The second table shows the eigenvalues and the amount of variance explained by each 
successive factor.  The Initial Eigenvalues are for a principal components analysis, in which 
the communalities are one.  The final communalities are estimated by iteration for the 
principal axis factor analysis, as mentioned earlier.  As can be seen from the first table, they 
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are somewhat less than one, and the amount of variance accounted for is reduced, as can be 
seen in the second table in the section headed Extraction Sums of Squared Loadings.  The rest 
of the factor analysis is based on two factors, because two factors have eigenvalues greater 
than one.  There are other methods which can be used to decide on the number of factors, 
some of which may generally be more satisfactory than the rule used here (Fabriger et al, 
1999).  As an aside, it has been suggested that over-extraction (retaining more than the true 
number of factors) leads to less distorted results than under-extraction (retaining too few 
factors); Wood, Tataryn & Gorsuch, 1996. 

Factor Matrixa

.857 .078
-.347 .376
.749 .276

-.590 .548
.927 .110

-.465 .555
.664 .368
.187 .490

D6A  Hard work&effort
D6B  Good luck
D6C  Natural ability
D6D  Who you know
D6E  Good performance
D6F  Office politics
D6G  Adapatability
D6H  Years of service

1 2
Factor

Extraction Method: Principal Axis Factoring.

2 factors extracted. 9 iterations required.a. 
 

The table headed Factor Matrix shows the coefficients a11, a12 … anm for the factor analysis 
model (1); for example, the results show that variable d6a = .857 x F1 + .078 x F2, d6b =      -
.347 x F1 + .376 x F2, and so on. 
 
As pointed out earlier, the sum of the squared loadings over factors for a given variable 
shows the communality for that variable, which is  the proportion of the variance of the 
variable explained by the common factors; for example, the communality for d6a is .8572 + 
.0782, which is equal to .740, the second figure shown for that variable in the Communalities 
table above.  The sum of the squared loadings for a given factor shows the variance 
accounted for by that factor.  The figure for Factor 1, for example, is equal to .8572 + -.3472 + 
.7492 + … + .1872 = 3.32, which is the figure given for the first factor in the second part of 
the Total Variance Explained table above.  Finally, we may reproduce the correlations from 
the factor-solution coefficients.  The correlation between D6A and D6B, for example, is equal 
to (.857 x -.347) + (.078 - .376) = -.268, a not unreasonable but not startlingly accurate 
estimate of the -.32 shown in the table of observed correlations. 
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9.4  Plot of the Factor Loadings 

Factor Plot

Factor 1

1.0.50.0-.5-1.0

F
ac

to
r 

2

1.0

.5

0.0

-.5

-1.0

years of service

adapatability

office politics

good performan

who you know

natural ability
good luck

hard work&effort

 
When there are two factors, the coefficients shown in the Factor Matrix table may be plotted 
on a two-dimensional graph, as above (choose Unrotated factor solution in the Display panel 
of the Factor AnalysisExtraction display).  This graph shows the phenomenon mentioned 
earlier, whereby most variables tend to have substantial loadings on the first factor. 
 
9.5  Rotated Factor Solution 

Rotated Factor Matrixa

.765 -.394
-.092 .503
.780 -.169

-.204 .779
.842 -.405

-.094 .718
.758 -.046
.421 .313

D6A  Hard work&effort
D6B  Good luck
D6C  Natural ability
D6D  Who you know
D6E  Good performance
D6F  Office politics
D6G  Adapatability
D6H  Years of service

1 2
Factor

Extraction Method: Principal Axis Factoring.  
Rotation Method: Varimax with Kaiser Normalization.

Rotation converged in 3 iterations.a. 
 

The above table shows the factor loading/correlations for a rotated factor solution.  
Comparing the graphs for the rotated and unrotated solutions, it can be seen that the 
proximity of the points representing the variables to the axes (and the frame) have changed.  
This change was brought about by rotating the whole frame, including the axes, in a counter-
clockwise direction.  In this case the Varimax method was used; for each variable, this seeks 
to maximise the loading on one factor and to minimise the loadings on other factors.  As 
discussed in An Introduction to SPSS for Windows, a clear pattern now emerges, with items 
having to do with performance and ability loading highest on Factor 1 and those to do with 
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who you know and good luck loading highest on the Factor 2.  Years of service has lowish 
loadings on both factors.   
 
9.6  Plot of the Rotated Factor Loadings 

Factor Plot in Rotated Factor Space

Factor 1

1.0.50.0-.5-1.0

F
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adapatability
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good performance

who you know

natural ability

good luck

hard work&effort

 
The plot shows a clear pattern of the loadings, with all items identified with either Factor 1 or 
Factor 2, with the exception of Years of Service, which is poised between the two.  This result  
illustrates the benefits of rotation.   
 
9.7  Factor Scores 
 
In An Introduction to SPSS for Windows,  a 'coarse' method (Grice, 2001) was used to create 
factor scores.  We simply  decided which variables were identified with each factor, and 
averaged the ratings on the selected items to creat a score for each subject on each of the two 
factors.  Years of service was omitted because it was not clearly identified with one factor.    
 
This method of creating factor scores is equivalent to using the equations 
 
F1 = b11X1 + b12X2 + b13X3 + b14X4 + b15X5  
F2 = b21X1 + b22X2 + b23X3 + b24X4 + b25X5  
 
and assigning the value 1 to the b-coefficients for variables with loadings/correlations greater 
then .4 and zero to the b-coefficients for variables with loadings/correlations equal to or less 
than .4.   Grice (2001) critically evaluates this method.  One obvious problem is that factor 
scores created in this way may be highyl correlated even when the factors on which they are 
based are uncorrelated (orthogonal). 
 
SPSS provides three more sophisticated methods for calculating factor scores.  In the  
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Factor Score Coefficient Matrix

.184 -.091

.052 .120

.230 .118

.094 .472

.473 -.186

.120 .312

.197 .163

.118 .135

D6A  Hard work&effort
D6B  Good luck
D6C  Natural ability
D6D  Who you know
D6E  Good performance
D6F  Office politics
D6G  Adapatability
D6H  Years of service

1 2
Factor

Extraction Method: Principal Axis Factoring.  
Rotation Method: Varimax with Kaiser Normalization. 

Factor Scores Method: Regression.
 

 
present example, the default Regression method was used.  The first table above,  
 

Factor Score Covariance Matrix

.882 -.090
-.090 .778

Factor
1
2

1 2

Extraction Method: Principal Axis Factoring.  
Rotation Method: Varimax with Kaiser Normalization. 

Factor Scores Method: Regression.
 

the Factor Score Coefficient Matrix, shows the coefficients used to calculate the factor 
scores; these coefficients are such that if the observed variables are in standardised form, the 
factor scores will also have a mean of zero and a standard deviation of one.  Using the 
coefficients for Factor 1, the factor scores are equal to .184 x zD6A + .052 x zD6B + … + 
.118 x zD6H, where zD6A, etc are the standardised forms of the original observed variables.  
The second table above, Factor Score Covariance Matrix shows that although theoretically 
the factor scores should be entirely uncorrelated, the covariance is not zero, which is a 
consequence of the scores being estimated rather than calculated exactly. 
 
10.  Conclusion 
 
This has been a very brief introduction to factor analysis, and only some of the many 
decisions which have to be made by users of the method have been mentioned.  Fabrigar et al 
(1999) give a thorough review.  Some the decisions they refer to are: 
 
 The number of subjects (see also MacCallum, et. al., 1999) 
 The type of factor analysis (e.g., principal axis factoring, principal components analysis, 

maximum likelihood) 
 The method used to decide on the number factors (e.g., eigenvlaues greater than unity, 

scree plot, parallel analysis) 
 The method and type of rotation  
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Grice (2001) adds another decision: 
 
 The method used to calculate factor scores 
 
 
These two articles are a good place to start when considering the use of factor analysis, or 
when designing a study in which factor analysis will be used. 
 
 
 
 
 
Alan Taylor 
Department of Psychology 
5th June 2001 
Modifications and additions 4th May 2002 
Slight changes 27th May 2003 
Additions 20th March 2004 
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